TOXICOLOGICAL SCIENCES 115(1), 253-266 (2010)
doi:10.1093/toxscifkfq021
Advance Access publication January 27, 2010

Development of a Quantitative Model Incorporating Key Events in
a Hepatotoxic Mode of Action to Predict Tumor Incidence

Nicholas §. Luke.* Reeder Sams 11,1 Michael J. DeVito,t Rory B. Conolly,§ and Hisham A. E]-Masri§’1

*Department of Mathematics, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411; tNational Center for
Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711 ;
fNational Toxicology Program, National Institute for Environmental Health Sciences, Research Triangle Park, North Carolina 27709; and §integrated Systems
Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection
Agency, Research Triangle Park, North Carolina 27711

! To whom correspondence should be addressed at U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Mail Drop B143-01, Research Triangle
Park, NC 27711. Fax: (919) 541-4284. E-mail: el-masri.hisham@epa.gov.

Received September 4, 2009; accepted January 20, 2010

Biologically based dose-response (BBDR) modeling of environ-
mental pollutants can be utilized to inform the mode of action
(MOA) by which compounds elicit adverse health effects. Chemicals
that produce tumors are typically labeled as either genotoxic or
nongenotoxic. Though both the genotoxic and the nongenotoxic
MOA may be operative as a function of dose, it is important to note
that the label informs but does not define a MOA. One commonly
proposed MOA for nongenotoxic carcinogens is characterized by
the key events cytotoxicity and regenerative proliferation. The
increased division rate associated with such proliferation can cause
an increase in the probability of mutations, which may result in
tumor formation. We included these steps in a generalized com-
putational pharmacodynamic (PD) model incorporating cytotox-
icity as a MOA for three carcinogens (chloroform, CHCl;; carbon
tetrachloride, CCL4; and N,N-dimethylformamide, DMF). For each
compound, the BBDR model is composed of a chemical-specific
physiologically based pharmacokinetic model linked to a PD model
of cytotoxicity and cellular proliferation. The rate of proliferation is
then linked to a clonal growth model to predict tumor incidences.
Comparisons of the BBDR simulations and parameterizations
across chemicals suggested that significant variation among the
models for the three chemicals arises in a few parameters expected
to be chemical specific (such as metabolism and cellular injury rate
constants). Optimization of model parameters to tumor data for
CCL, and DMF resulted in similar estimates for all parameters
related to cytotoxicity and tumor incidences. However, optimization
of the CHCI; data resulted in a higher estimate for one parameter
(BD) related to death of initiated cells. This implies that additional
steps beyond cytotoxicity leading to induced cellular proliferation
can be quantitatively different among chemicals that share
cytotoxicity as a hypothesized carcinogenic MOA.

Key Words: quantitative modeling; risk assessment; mode of
action.

General scientific consensus is that the current risk as-
sessment methodologies and approaches are insufficient with

Published by Oxford University Press 2010.

respect to efficiently characterizing the human health risk of
exposure to existing and future environmental pollutants
(Codlims er af., 2008). Current approaches must move toward
risk assessment methodologies that will assess the risk to mul-
tiple environmental pollutants or classes of chemicals simul-
taneously (Edwards and Preston, 2008). The National Research
Council (MR, 2007) has made multiple recommendations re-
garding the approach to human health risk assessment. Among
these recommendations and key to characterizing, the dose-
response paradigm is the use of computational modeling or
biologically based dose-response (BBDR) models. BBDR
models may be designed and developed as computational tools
to test mode of action (MOA) hypotheses and characterize
uncertainty (e.g., extrapolation, human variation, duration of
exposure, etc.) across classes of environmental pollutants.

In recent years, MOA analysis has become a useful tool in
human health risk assessment to inform the approach for low-
dose extrapolation of risk (Meek er of., 2003; S5likker of ol
2004da; Sonich-Mullin et gf, 2001, U5 Epnvironmental
Protection Agency [USEPA], 2003) and a critical component
of BBDR models. Throughout the evolution of risk assessment
methodologies, many MOAs have been proposed and com-
monalities in the general mode(s) of action are being realized.
Among these commonalities is the cytotoxic MOA leading to
tumor formation (Slikker ez af., 2004b). Specifically, for this
MOA, the key events for either the parent chemicals or their
bioactive metabolites are identified as (1) exposure to an
environmental pollutant, (2) sustained cellular cytotoxicity,
(3) regenerative cell proliferation, and (4) tumor formation.

The Environmental Protection Agency’s Cancer Guidelines
(UJSEPA, 2003) emphasize the use of MOA information in risk
assessment for environmental pollutants to better characterize
the risk of adverse health effects to humans. In addition, when
available, the use of a BBDR model is generally preferred
because empirical data are used to characterize the
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pharmacokinetic and pharmacodynamic (PD) relationships of
the key events in MOA rather than default assumptions. Sig-
nificant progress has been made in utilizing pharmacokinetic
models in risk assessments (Thompson of @i, 2008). In com-
parison, the use of PD models is not as prevalent because they are
heavily dependent upon MOA information, which is often
inadequate for environmental pollutants. Therefore, a key
question arises, “how can BBDR modeling efforts inform
missing information (e.g. MOA)?” In part, iterative modeling
processes can be utilized to test MOA hypotheses, identify re-
search gaps, and generate data to parameterize the BBDR model.
Model predictions could provide agreement with empirical data,
providing support for the hypothesized MOA. Conversely, if
model fits are inconsistent with data across chemicals, then the
model can be used to identify research needs for specific
chemicals and classes of chemicals. It is important to note that
modeling efforts of this type (i.e., BBDR) can only test MOA
hypotheses and not identify alternative MOAC(s). Future steps
must consider the use of relevant phenotypic measurements
representing key events, the source and magnitude of model
uncertainty, uncertainty derived from the MOA, and variation in
physiological or biochemical parameters.

Multiple environmental pollutants including chloroform
(CHCL) (Wolf and Butterworth, 1997), carbon tetrachloride
(CClL) (Manibusan ef af., 2007), furan (Moser et o,
2009), dimethylarsinic acid (Uohen et af, 2007), and N,N-
dimethylformamide (DMF) (Ohbayashi ¢f of., 2008), among
many others, are believed to induce a tumorigenic response
through a cytotoxic MOA. Tumors that are hypothesized to be
induced through a cytotoxic MOA have been observed in
multiple tissues, including liver (Holsapple e af, 20008),
bladder (Cohen er o/, 2007), and kidney (Hard, 2002). Several
of the compounds mentioned here are hypothesized to induce
tumors through this MOA, induce their toxic effect in the liver
as a target organ. Development of a computational model for
key events within the MOA is dependent upon the availability
of sufficient empirical data. Hepatocellular cytotoxicity is
typically measured by several laboratory methods, including
histopathological techniques and serum liver enzymes. Like-
wise, cellular regeneration within the liver can also be
evaluated by histopathological techniques in addition to
bromodeoxyuridine (BrdU) and radioactive labeling techniques
to measure the synthesis of DNA i proliferating liver cells.
Empirical data to support key events must demonstrate both
a dose-response and a temporal relationship for the formation
of hepatocellular tumors (LISEPA. 2(3). For many environ-
mental pollutants, sufficient empirical data to evaluate
a hepatocellular cytotoxic MOA is unavailable; however,
considerable data for CHCl; (LIBERPA, 2001), CCL, (USEPA,
2008), and DMF (Semoh er of, 204) exist to support the
development of a BBDR model for a cytotoxic MOA.

For these three compounds, it is logical to hypothesize that
a quantifiable relationship may exist between each of the key
events as well as with the tumor response. Holsapple ef af.

(20006) stated, “it is important to establish that there are parallel
dose responses (not necessarily identical) for the key events
(i.e., cytotoxicity and proliferation) and tumors, as well as
specificity of the key events and the tumor response.”
Additionally, it is critical to evaluate whether other MOAs
contribute significantly to the tumorigenic response, although
this was not possible within this BBDR effort. The testing of
alternative MOA(s) would require empirical data to test such
hypotheses. Previously, a physiologically based pharmacoki-
netic/PD (PBPK/PD) model was developed for CHCL;, which
is hypothesized to act through a cytotoxic MOA (Tan ¢z af.,
2003). For these reasons, we have expanded upon this work by
developing a BBDR model to predict the tumorigenic response
based upon the key events of cytotoxicity and cellular
proliferation for CHCl;, CCl,, and DMF. The purpose of the
modeling effort in this paper was to develop a generalized
computational model incorporating key events in a cytotoxic
MOA for tumorgenicity. A comparison of the optimized PD
parameters for cytotoxicity and tumor incidence will indicate
the ability to generalize this MOA across these chemicals. This
model describes the relationship between cytotoxicity, re-
generative proliferation, and tumorigenic response. If the
proposed hypothesis of cytotoxicity leading to regenerative
proliferation and tumor formation is correct for all chemicals
examined, then the only chemical-specific model parameters
needed should be those that relate chemical exposure (phar-
macokinetics) to cytotoxicity. Once chemical-specific pro-
cesses cause cytotoxicity, numerical magnitude of resulting
regenerative proliferation and tumors should be independent of
chemical in a generalized cytotoxicity MOA for tumorgenicity.

MATERIALS AND METHODS

Software

The model was coded and simulations were executed using MATLAB
R2006b (The Mathworks Inc., Natick, MA). The systems of differential
equations were integrated using the MATLAB command odel5s, which uses
a variable order method to solve a system of stiff differential equations. All
simulations were run on a 2.8 GHz Pentium computer running the Windows
XP operating system.

Data reported in previously published studies were digitized via the
DataThief III v1.1 (Bas Tummers, Eindhoven, the Netherlands) digitization
program.

Model Structure

The overall BBDR model has been formulated to link exposure to a com-
pound with the probability of forming hepatocellular tumors in female B6C3F1
mice. For the three chemicals, CHCl;, CCly, and DMF, hepatic metabolic activity
is related to the formation of tumors (Marnbusan er ol 2007; Chbayashi er o,
2008, Wolf and Butterworth, 1997). Therefore, PBPK models were utilized
from literature for CCly and CHCl; and developed de nove for DMF to estimate
the rate of metabolism in the liver. The metabolism rate was then used as an
input to a PD model of cytotoxicity and regenerative proliferation to estimate a
proliferation rate for use in a two-stage clonal growth model to predict the for-
mation of tumors. The following sections provide a detailed description of the
structure of the overall model structure (depicted in Fig. 1).
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FIG. 1.
linked with a two-stage clonal growth model.

PBPK models. For each compound, a PBPK model was used to
approximate the metabolism rate in the liver. Each model was constructed
with the same general structure, which was similar to the model developed for
styrene by Kamsey and Andersen (1984). The general structure of the PBPK
model is represented by Equations A1-A9 in the Appendix. All three models
included compartments for lung, liver, fat, slowly perfused tissues, and rapidly
perfused tissues. The models for CHCl; and DMF also included an additional
compartment for the kidney. A kidney compartment was included in the DMF
model to incorporate available urinary excretion data for model development.

It is assumed that all three compounds are metabolized in the liver and that
CHCl; is also metabolized in the kidney (Brunchflower er o1, 1984). Hepatic
metabolism was described as a single metabolic pathway that followed
Michaelis-Menten kinetics. In addition to hepatic metabolism, DMF urinary
excretion was included in the DMF PBPK model as a first order process.

The PBPK model parameter values for each compound are displayed in
Taie |. The CHCl; model was reproduced using values reported in Corley
et af. (1990 and Van ef 1. (2007, Parameter values for CCl, were taken from
Benson er of. (2001) and Thrall ef af. (20005 A PBPK model for DMF was not
located, thus the PBPK model parameters were obtained from literature or
optimized as described.

Physiological parameter (volumes and blood flows) values from the CHCl;
model were also used for the DMF model and were supplemented with values
reported in Brown & ol (1997) when necessary. DMF partition coefficients
were estimated from the DMF octanol:water coefficient, log Kow = —1.01
(Ghack er of., 199¢), using an algorithm developed by Poulin and Krishnan
{1995, For DMF hepatic metabolism, the Michaelis constant (K,,) was
recalculated (unit conversion) from Muaz er . {1993}, while the maximum rate
(Vinax) was optimized to DMF plasma concentration levels from a 6-h
inhalation exposure study presented by Hundiey er af {19935

PD model of cytotoxicity. The PD model of cytotoxicity and regenerative
proliferation was based on the models of cytotoxicity and regenerative

Schematic drawing of the overall BBDR model. A PBPK model is linked to a PD model of cytotoxicity and regenerative proliferation that is alse

proliferation presented in Fan e of. {2003 and Yaao of of, {2007). Conceptually,
the cytotoxicity model related the rate of damage formation in the liver
proportionally to the PBPK model-predicted rate of hepatic metabolism. Damage
was removed (repaired) by a saturable repair process. As the damage accumulate
and surpassed a threshold, the cellular death rate increased. To compensate for an
increase in cell death, regenerative proliferation occurred, leading to an increased
division rate. Equations A10-A1S5 in the Appendix represent these processes.
Regenerative proliferation is a compensatory action in a cytotoxicity MOA.
That is, the cellular division rate increases to compensate for an increased
cellular death rate. Cellular death rate was linked to chemical dose vig the rate
of chemical metabolism and hepatocyte damage. Thus, as the chemical dose
and metabolism increased, the amount of hepatocyte damage increased, leading
to an increase in both the cellular death and the division rates. We included
a maximal death rate (Byax, defined to be 50% of the maximal division rate) in
the PD cytotoxicity model because sufficiently high chemical doses resulted in
death rates much greater than the maximal division rate, causing a depletion of
the cell population. In the MOA examined here, depletion of the cell population
was not biologically plausible. Additionally, because the labeling index
(represented by Equation A15) is computed by dividing the number of labeled
cells by the total number of cells, a depletion of the cell population would lead
to an undefined labeling index, resulting in a mathematical error. For these
reasons, we elected to incorporate a maximal death rate, as detailed above. It
should be noted that the assumption that the maximal death rate is 50% of the
maximal division rate was arbitrarily chosen based on analysis of several values
between 25 and 150% of the maximal division rate. Values within this
examined range exhibited no impact on the overall model predictions.
Parameter values used in the cytotoxicity model for each compound are
displayed in Tabd 2. Values used in the CHCl; model were taken from Tan
ef gl (200737 and Liao et of (2007 and verified by comparing the model output
to labeling index data reported in Larson ef /. {1996). Parameters that represent
cellular processes (e.g., saturable repair, division, and death rates) were
assumed to have the same value in the models for all three chemicals. The
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TABLE 1
Parameter Values for the PBPK Models (optimized and
estimated values are italicized)

Parameter Function CHCl, CCly DMF

BW Body weight of mouse (kg)  0.02557 0.025°  0.0255"

Vi Volume of liver (% BW) 5.86° 4P 5.86°

Vk Volume of kidneys (% BW) 1.7 n/a 1.7°

Vi Volume of fat (% BW) 6.0° 4P 6.0°

Viu Volume of lungs (% BW) n/a n/a 0.734

Vr Volume—rapidly perfused 3.3° 5k 227°
tissue (% BW)

Vs Volume—slowly perfused 7414 78° 74.14¢
tissue (% BW)

O Alveolar ventilation (I/h) 2.01° 1.8° 2.01°

Oc Cardiac output (I/h) 2.01° 1.8° 2.01°

Our Blood flow to liver (%0¢) 25¢ 24b 25°

Ox Blood flow to kidney (%Q¢)  25° n/a 25°

Or Blood flow to fat (%0c) 2° 5° 2

Or Blood flow to rapidly 29° 5254 29°
perfused (%0c)

Oy Blood flow to slowly 19¢ 19% 19°
perfused (%Q¢c)

Pig Liver:blood partition 0.7012¢  3.142% 094
coefficient (unitless)

Py Kidney:blood partition 0.5062% n/a 0.96
coefficient (unitless)

Pr Fat:blood partition 1004  62.17° 028
coefficient (unitless)

Pr Rapidly perfused:blood 0.7925° 3.142°> 094
partition (unitless)

Py Slowly perfused:blood 0.5394°  1.004> 087
partition (unitless)

Vinax Maximal rate of 0.6421° 0.0605" 1.085%
metabolism (mg/h)

K., Half-maximal 0.77¢ 0.46° 14.2"
concentration (mg/l)

A Constant relating metabolic 0.153° n/a n/a
activity of kidney to
metabolic activity
of liver (unitless)

Kioss Chemical loss due to n/a 5° n/a
chamber leak (%)

kyy Urinary excretion rate n/a n/a 8.5 X 1078

constant (1/h)

Note. n/a, not applicable.
“Tan et o {2003).
PHenaon and Springer (1999),
‘Corley e af. (1990).
Srown et of {1997,
“‘Corley e al. (1990), adjusted for lung volume.
/Estimated using algorithm presented by Poutin and Krishnan {1995),
#0ptimized to data (Hundley 2 of., 1993).
"Wirme et ol {1993,
Blood flow to the kidneys is incorporated into the rapidly perfused tissue, as
there was no kidney compartment in the CCl; PBPK model.

proportionality constant (kgq..) relating the rate of metabolism to the amount of
cellular damage is a chemical-specific parameter.

The value of kq,r,, for CHCl; was obtained from ¥Fam ef /. {2003). For CCly,
kaam was optimized by fitting the model results to labeling index data presented in

Bemson  and  Speinger (1999 (httpr/fwww.osti.gov/em52/final_reports
/54940 pdf). Without labeling index data, kga, for DMF was optimized, in
conjunction with the clonal growth model, to tumor incidence data (Sexih e af
2004,

Clonal growth model. Tumor incidences for each chemical were predicted
using a two-stage clonal growth model. The biclogical structure of this model
was similar to other two-stage models (also known as MVK models) that have
recently been presented (Andersen and Conolly, 1898, Crump of of., 20035;
Kodell er ol 2001; Little ¢ ol 2008). Our model considered three independent
populations of cells (normal, initiated, and malignant cells). The population
dynamics of normal and initiated cells were governed by the following events:

e A normal cell can replicate with probability oy resulting in two normal
cells.

e A normal cell can differentiate or die with probability Bx-

e A normal cell can mutate with probability py vielding one normal cell
and one initiated cell.

e An initiated cell can replicate with probability og resulting in two initiated
cells.

e An initiated cell can differentiate or die with probability B.

e An initiated cell can mutate with probability py yielding one initiated cell
and one malignant cell.

The parameters for the division (o) and death (By) of nommal cells were
calculated by the cytotoxicity model. The mutation probability (jn) was set so
that the meodel predicted a basal or background level of tumeor incidence in
absence of chemicals. As doses of each chemical were introduced in the model,
simulations were first run under the assumption that both the division and the
death rates of initiated cells were the same as for normal cells, and the resulting
predicted tumor incidences did not exhibit much of an increase above basal.
This suggested that the initiated cells required a growth advantage over normal
cells to result in an increased tumor incidence in the presence of chemicals.
Computationally, this growth advantage can be incorporated as an increase in
the division rate or as a decrease in the death rate of initiated cells.

Recent studies suggest that the levels of cytochrome P450 2E1 (CYP2ELD),
the primary enzyme responsible for the metabolism of CHCl;, CCl,, and DMF,
are reduced in initiated and cancerous cells (Bargheim e ol 2007; Ho o o,
2004). We assumed that the reduced level of CYP2E1 would decrease the rate
of metabolism in initiated cells, thereby lessening the cytotoxicity and ensuing
death rate. This was incorporated into the model by setting the death rate of
initiated cells equal to the death rate of normal cells in the absence of chemical.
In the presence of chemical, the death rate is then multiplied by a reduction
factor (BD, where 0 < BD < 1). This reduction in death rate effectively gives
the population of initiated cells a growth advantage, similar to that described by
Conolly e al. {2003

Hence, the division (o) and death (By) rate parameters for initiated cells are
given by the following equations:

o5 (t) = on(1) 0
[ Bn() if dose =0
hile) = { B:@ “BD if dose > 0’ (2)

Furthermore, the mutation parameters for initiated and normal cells are
assumed to be the same.

Because several of the parameters used in this model are time dependent, we
utilize a version of the clonal growth model based on earier published formulation
(Powtier e of, 1996, 2000). The structure of this model is as follows:

dPx(s,T)

S =on(T — SYPL(s, TY + By(T — 5)

+ (T — $)Pn(s, T)P1(s, T) (3)

(T ) 4 BT ) 4 (T $)P( )
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TABLE 2
Parameter Values for the PD Model of Cytotoxicity and Regenerative Proliferation (optimized values are in bold)

Parameter Description CHCl; CCly DMF

kdam Proportionality constant relating rate of 1“ 8.739° 0.5255°
metabolism to damage (damage units/mg/l)

kdarm Maximum repair capacity (damage units/h) 95.37 95.37 95.37

ky Half-maximal damage (damage units) 186.1¢ 186.1¢ 186.17

Betn Cell death rate of control liver (h™") 77 % 1074 77 % 107 77 % 107

ky Proportionality between amount of damage 10 X 107% 10 x 1075 1.0 X 107%
and death rate ([damage units X h]™ 1)

Th Threshold level of damage (damage units) 6.97° 6.97° 6.97°

- Cell division rate of control liver (h™1) 7.7 X 107 7.7 X 1073 777 X 1073

Newi Number of cells in control liver 1.69 x 107 1.69 x 10¥ 1.69 x 10%

Ohmax Maximum possible division rate (h™") 0.045% 0.045% 0.045%

Yun er ol (2003

POptimized to data (Benson and Springer, 1999).

“Optimized to data (Senob 2r i, 2004).

9Set equal to dey to ensure no change in liver size.

“Calculated from the control labeling index of Larson ef f. (19961
Faieibel ef af. (1969).

EConolly er af. (2003) and Liso et o {2007).

BT _ oy(r— B T) 4 BT —9) — [T — )
ds 4

+ BT — )+ my(T — 9IP(s. T),

with initial conditions

Py(0, Ty =1, P{0,7T)=1,

Pn(s.T) represented the probability that no progeny of a normal cell at time
(T'—s) became malignant by time 7. Similarly, Py(s,T) was the probability that
no progeny of an initiated cell became malignant by time 7. Detailed derivation
of Equations 3 and 4 was presented in Purtier er of. {1995, 2000).

As in previous papers using the clonal growth model, we assumed that once
a malignant cell was generated, its growth was deterministic and it became
a detectable tumor after a certain (constant) period of time. A delay parameter,
D, was used to translate predictions along the time axis. Thus, the cumulative
probability that a tumor was present at age 7 was computed as follows:

P(T < 1+ D) =1 (Py(T, 1)), (5)

where Ny equaled the number of normal cells at time 0.
Parameter Estimation

Unless otherwise stated, all optimal parameters were identified using
MATLAB’s fminsearchbnd command (available at www.matlabcentral.com).
This command is an implementation of the Nelder-Meade simplex algorithm,
which allows the user to specify lower and upper bounds for the possible
parameter space. fminsearchbnd was used to find the parameters that minimize the
following ordinary least squares (OLS) cost function (Sheiner and Heal, T9R3),

N

J :ZV(T;di?q)*Ziiz, (6)

i=1

where f{T;d;q) is the model approximation at the final time T, with the ith dose
(d;) and the parameter set g, and z; represents the data for dose d;.

For each of the three chemicals, the optimization routine was run with
a variety of initial iterates to verify that the identified optimal parameters were
not the product of a local minimum. For the optimal parameters reported for

CHCl; and CCly, each initial iterate resulted in the reported optimal value.
However, the optimization routine for DMF did not identify a unique set of
optimal parameters from the varied initial iterates. This was likely because we
attempted to identify both the kg, and the BD parameter values using tumor
incidence data, whereas we only identified the BD parameter value for the other
two chemicals. We report an optimal parameter set for DMF that produced the
lowest cost function value. It should be noted, however, that several parameter
combinations (optimal parameters identified via other initial iterates) resulted in
similar cost function values.

RESULTS

Chloroform

Parameters for the cytotoxicity portion of the model for
CHCl; were taken from previously published models (Liac
et al., 2007, Tan er of., 2003). The model was then used to
predict hepatic labeling indices of female B6C3F1 mice. A
comparison of the ensuing simulations with published labeling
index data (Larson e of., 1996) shows that the model simu-
lations are consistent with the data, as depicted in Figure 2.

The parameters for the clonal growth portion of the CHCl,
model are reported in Table 3. Because we could not uniquely
identify both the growth advantage and the mutation proba-
bility parameters with our limited data set, the mutation para-
meter, [y, was set at an estimated 2.6 X 107° (1/h). This value
fell within a range of reported values (Ro and Rannala, 2007,
Tauzukd 21 af., 2001) and allowed for an adequate fit to the
control data. Then, the initiated cells’ death rate reduction
parameter BD was optimized to tumor incidence data presented
by Yamamoto er af. {2002). The optimal value of BD was
found to be 0.731, resulting in an OLS cost function value of
11.63. Time course simulations of tumor incidences for mice
subjected to 0, 5, 30, or 90 ppm of CHCI; for 6 h/day, 5 days/
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FIG.2. Hepatocyte labeling indices in female B6C3F1 mice exposed to chloroform vapors. Model simulation (solid lines) and experimental data (open circles)
from Larson er f. {1996) are presented for mice that were exposed to CHCl; 6 h/day, 7 days/week, for (A) 4 days, (B) 3 weeks, (C) 6 weeks, and (D) 13 weeks.
Open squares in (D) represent the 13-week data from Constan ef of. {2007} to which the Tun e ¢! (2003 model was originally parameterized. Data points are

means, with error bars representing SD, as computed in the original studies.

week, for 104 weeks are shown in comparison to the tumor
incidence data in Figure 3. Model estimates for the O and
5 ppm doses were slightly higher than the data, while estimates
for the 30 ppm dose underpredicted. The model estimate for the
highest dose (90 ppm) is consistent with the published data. It
should be noted that without a more complete data set (i.e.,
time-to-tumor data), it was not possible to determine the delay
parameter, D, thus it was set equal to 6982 (h) as reported by
Conolly er al. (2003). Effect of the choice of this parameter was
further investigated using several possible values. Results of
this analysis showed that although the value of D slightly

impacted individual estimation of the clonal growth model
parameters, numerical trends remained similar, enabling con-
clusions of the overall model behavior across chemicals. Results
from this investigation are presented in Supplementary table 1.

Carbon Tetrachloride

With the exception of the k4., parameter, all parameter
values for the cytotoxicity portion of the CCl; model were set
equal to the values used for the CHCl; model. The biological
representations of all parameters except kg, are related to
dynamic processes within the cell, which are assumed not to

TABLE 3
Parameter Values for the Two-Stage Clonal Growth Model (optimized values are in bold)

Parameter Description CHCI, CCl, DMF

Hy Probability of a normal cell attaining 26 X 107% 26 X 107% 2.6 X 107%
4 mutation

T Probability of an initiated cell attaining 26 X 107 26 % 1077 2.6 X 107
a mutation

BD Death rate reduction for initiated cells 0.731° 0.5167 0.466°

GA Proliferation rate increase for initiated cells 1.275° 1.502¢ 1.539°

“Fixed within a range of reported values (R and Raonala, 2007; Tsuzuki #f ol 2001) and optimized to control.

bSet equal to iy

“Optimized to tumor incidence data (Yamamotio et ol 2002).
9Optimized to tumor incidence data (Nagana er af., HH¥).
“Optimized to tumor incidence data (Senoh ef af., 2004).
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FIG. 3.
hepatic tumor incidence data from female B6C3F1 mice exposed to chloroform
vapor for 104 weeks (Vamamoto #f al., 2002). The following concentrations of

(A) Time course hepatic tumor incidence simulations compared to

chloroform were examined: O ppm (solid line, open circle), 5 ppm (dotted line,
asterisk), 30 ppm (dash-dot line, open diamond), and 90 ppm (dashed line, x).

vary with chemical. An optimal value for kg, of 8.739 damage
units/mg/l was found using labeling index data reported by
Benson and Springer {1999). The optimized simulations are
presented in comparison to the data in Figure 4. The simulated
labeling indices seem consistent with the data, with the
exception of the highest dose (100 ppm) during the 1-week
exposure, which underpredicts the reported labeling index.

The clonal growth portion of the CCl; model was
parameterized using tumor incidence data from female
B6C3F1 mice exposed via inhalation to 0, 5, 25, and 125
ppm of CCl, for 6 h/day, 5 days/week, for 104 weeks (Magano
ef al., 2007). Values for iy and D that were used in the CHCl;
model were also used for CCl,. Thus, the only CCl, parameter
that was identified via optimization was BD, and its optimal
value was 0.516 (unitless). This resulted in an OLS cost
function value of 99.57. Model predictions of tumor incidences
for CCl, are illustrated in Figure 5. The model prediction was
lower than the reported tumor incidence for 5 ppm of CCly, but
predictions for the other three doses provided close fit to their
corresponding data values.

Magano ef of. (20817) showed that although tumor incidence
levels were increased at the lowest dose (5 ppm) of CCly,
cellular proliferation levels did not significantly increase as
they did at higher exposure levels. Because model simulations
in Figure 5 are based on cytotoxicity and cellular proliferation
as sole mechanisms for tumor incidences MOA of CCly, failure
of the model to simulate results at the 5 ppm dose of CCly is
expected. At this dose, mechanisms other than cytotoxicity/
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increased cellular proliferation that were not included in the
model may be important (Magano f af., 2007).

Dimethylformamide

With no published PBPK model for DMF, we first con-
structed and parameterized a model to predict the metabolism
rate of DMF in the liver. We employed the same general model
structure that was used for the CHCl; and CCl; PBPK models
(Equations A1-A9). However, since the available data for
DMF included plasma concentrations and amounts of DMF
excreted in the urine during a 24-h period (Hundley et af.,
1993), a few minor modifications were necessary. Urinary
excretion was included in the model as clearance from the
kidney using a first order rate constant, &, (Equation AS).

Because the available pharmacokinetic data for DMF in-
cluded concentration in plasma, we modified the PBPK model
to evaluate plasma concentrations. The concentration of
chemical in the blood (Cg) as a function of the concentration
in the plasma (Cp) and the concentration in the red blood cells
(Crpe) can be written as follows (Laplanche e of, Z007):

CB:(lfH)'CP+H'CRBc. (7\)

Assuming that binding between DMF and the red blood cells
is insignificant (Cgrpc ~ 0), then Cp = 1€BH= where H represents
the hematocrit of the mouse (we used a value of 45%, as
reported in Trune et ¢f., 2006). Finally, since blood is divided
between the arterial and venous compartments at a volumetric
ratio of 1:3 (kohn, 1997), plasma concentrations were
computed for the DMF model using the following equation:

0.75-Cy +0.25.C
Cp=—Z N T A

1-H ’ ®)
where Cv 18 the concentration of DMF in the venous blood
and C, is the concentration of DMF in the arterial blood.

We determined optimal values for the maximal metabolism
rate (Vinax, 1.085 mg/h) and the urinary excretion rate (k,
8.5 X 1077 1/h) parameters to the time course DMF plasma
concentration and urinary excretion data reported by Hundley
#t af. {1993} for mice exposed to 250 or 500 ppm DMF via
inhalation for 6 h. A comparison of the PBPK model simu-
lations with the published data are shown in Figure & (plasma
concentration) and Figure 7 (urinary excretion). The model
simulations provide an adequate fit to the plasma concentration
data with a slight overprediction for the 250 ppm data set.
Model simulations for the urinary excretion were lower than
the reported values for the 250 ppm exposure and higher than
the reported 500 ppm exposure values.

The chemical-specific parameters for the cytotoxicity and
clonal growth portions of the DMF model were optimized to
published tumor incidences after a 104-week study (Sench
et af, 2004). Female B6C3F1 mice were exposed via
inhalation to 0, 200, 400, and 800 ppm of DMF for 6 h/day,
5 days/week, for 104 weeks. Optimal values were

110z ‘g Aenigad uo Aeig Aousby uonoaloid [BUSWUOHAUT 1B Bio s{BuwinolpioiXo  19SX0] WO PapeojuMog

ED_002435_00000312-00007



260 LUKE ET AL.

el
A Tweek exposure )
=
L2
]
E 40 I
] P e
£ —
& o
L2
3
1 0 100

CCL, (ppmy

80
o C 12 week sxposure
£ &0 /1
= lm w**““w‘
o et et
& o
z ., fd -
£ W g
&0 100
CCL, (ppmy

80
B 4 week exposure
=80
by ‘-"ﬁw be i}
£ o4 e I
ta7] __,,v./-'-"‘
E -
= .
% m * -~
AR
ﬂ Lty
0 50 100

CCL, (ppm)

FIG. 4. Hepatocyte labeling indices in female B6C3F1 mice exposed to CCly vapors. Model simulation (solid lines) and experimental data (open circles) from
Benson and Speinger {19991 are presented for mice that were exposed to CCly for 6 h/day, 5 days/week, for (A) 1 week, (B) 4 weeks, and (C) 12 weeks. Data points

are means, with error bars representing SD, as computed in the original studies.

simultaneously identified for kg, (0.5255 damage units/mg/1)
and BD (0.466 unitless), yielding an OLS cost function value
of 4.01. Figure & depicts the resulting time course simulation of
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FIG. 5. (A)Time course hepatic tumor incidence simulations compared to
hepatic tumor incidence data from female B6C3F1 mice exposed to CCly vapor
for 104 weeks (Magano e af, 2007). The following concentrations of CCly
were examined: O ppm (solid line, open circle), 5 ppm (dotted line, asterisk), 25
ppm {dash-dot line, open diamond), and 125 ppm (dashed line, x).

tumor incidence due to dimethylformamide exposure. Model
simulations accurately predict the reported tumor incidences
for all exposure levels of DMF.

DISCUSSION

The purpose of the modeling effort in this manuscript was to
develop a generalized computational model incorporating key
events in a cytotoxic MOA for tumorgenicity and to test if the
proposed hypothesis of cytotoxicity leading to regenerative
proliferation and tumor formation is supported for all chemicals
examined. Once chemical-specific processes cause cytotoxicity,
the magnitude of resulting regenerative proliferation and tumors
is not expected to be chemical dependent but directly related to
the hypothesized key events leading to tumor formation.
Although it is critically important to evaluate the contribution
of other MOAs to the tumorigenic response, BBDR efforts as
described here can only test MOA hypothesis for which there
exists empirical data, it cannot predict an alternative MOA. For
this reason, only the parameters discussed below were explored
as they relate to the cytotoxic MOA. If additional data were
available to characterize other key events (e.g., genotoxicity,
epigenetic events, etc.) within alternative MOAs, additional
parameters could be explored in a similar fashion.

Overall BBDR model consisted of pharmacokinetic and PD
components. Pharmacokinetic parameters varied between the
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three tested chemicals as expected. Two parameters related to
the PD section of the model (k4,,, and BD) were optimized using
labeling indices and tumor incidences data for each chemical.

Model Optimization of the First Order Cellular Injury Rate
Constant (Kg,)

Labeling index data can be used to infer the amount of
regenerative cellular proliferation in the liver after exposure to
a chemical. The labeling index provides an estimate of the per-
centage of hepatocytes that were in S-phase during the period
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FIG. 7. PBPK model prediction of DMF excreted in urine by male
B6C3F1 mice following a single 6-h exposure to 250 or 500 ppm compared
with data (Hundley er 2f., 1993).
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FIG. 8. (A) Time course hepatic tumor incidence simulations compared to

hepatic tumor incidence data from female B6C3F1 mice exposed to DMF vapor
for 104 weeks (Senody & of., 20044). Hepatic tumor incidence was estimated by
the model and compared to data for animals exposed to: O ppm (solid line, open
circle), 200 ppm (dotted line, asterisk), 400 ppm (dash-dot line, open diamond),
and 800 ppm (dashed line, x).

of exposure to a DNA precursor—labeling agent, such as BrdU.
Hepatic labeling indices for various doses of CHCl; and CCl,
were reported by Earson #f @f. {1996} and Benson and Springey
{1999y, respectively. Table 4 presents a brief chemical
comparison of labeling index, showing the dose for each
chemical that resulted in an 18% fixed labeling index and the
corresponding tumor incidences.

Laboratory experiments showed that doses of 90 ppm for
CHCl; (Larson ef af., 1996) and 25 ppm for CCL, (Benson and
Springer, 1999) result in a labeling index of 18%. Ultilizing the
cytotoxicity model for DMF, we estimated that a dose of
approximately 265 ppm of DMF would correspond to an 18%
labeling index. Each chemical has a different dose that leads to
alabeling index of 18%, which implies that the chemicals vary in
their cytotoxic potency. As such, some portion of the parameter
space for the cytotoxicity model must differ among the various
chemicals; therefore, we varied the parameter kg, by chemical.
Because kq.,, is a proportionality constant that relates the rate of
chemical metabolism to the amount of damage attained, it may
also be considered a measure of cytotoxic potency. For
a chemical with a higher k4., value, less chemical metabolism
(e.g., lower doses or slower metabolism rate) would produce
a regenerative proliferation rate equal to that of a chemical with
alower kq.p, value and faster metabolism rate. This suggests that
chemicals with higher k4., values are more cytotoxic.

Thus, using kq., values as an indicator of toxicity, CCl,
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TABLE 4
Chemical Comparison of Labeling Index and Tumor Incidence
Data
CHCl; CCly DMF
Dose (ppm) 90%k 254 265°
Labeling index (%) 18¢ 18° 18°
Tumor incidence (%) 12¢ 85¢ 100°

arson ef of. (1996}

by amamoto e ol ( 20023
“Benson and Springer (1999
dNagmm et gl (CHENT.
“Model estimated.

damage units/mg/l). This observation is also reflected in Table 4,
with CCl; requiring the lowest dose (25 ppm) and DMF
requiring the highest dose (265 ppm) to result in a labeling index
of 18%.

We further examined the relative hepatotoxicity by consid-
ering sorbitol dehydrogenase (SDH) activity. SDH is an
enzyme that is highly sensitive for liver cell necrosis (E.orsrud
et al., 1972, 1973). As such, SDH activity may serve as
a marker for cytotoxicity. Lundberg or af {1986} presented
a comparison of SDH activity in rats after an ip injection of
several different industrial solvents. Using their reported levels
for CCl,, CHCl;, and DMF, we formulated linear equations to
relate the administered dose to the SDH activity levels and
calculated the slope of the lines (Tahle 3). In order to compare
these slopes with the chemical-specific k4., parameters, each
slope was normalized to the slope for CHCl;. This resulted in
normalized slopes of 14.68, 1, and 0.5428 for CCl,;, CHCl;,
and DMF, respectively. These values compare favorably to the
optimal kg4, values that were estimated from model compar-
isons to labeling index data. These results suggest that incor-
porating a measurable marker of damage (as in kq.,), such as
SDH, into future modeling efforts is feasible.

Model Estimation of the Death Rate Reduction Parameter
(BD)
The clonal growth portion of the model relates cellular
proliferation to tumor formation. The data presented in Table 4

show for three chemicals that different tumor incidences result
from an 18% labeling index. An 18% labeling index for CHCl,

TABLE 5
Comparison of SDH and the Parameter kg,

Linear slope

(SDH to dose) Ratio to CHCl, kdam
CHCl3 0.2074 1 1
CCly 3.044 14.68 8.739
DMF 0.1126 0.5428 0.5255

corresponds the lowest tumor incidence (12%), and DMF
results in the highest tumor incidence (predicted to be 100%).
This is also reflected in the optimal values of the death rate
reduction parameter (BD). Estimated parameter values for
DMF and CCl, suggest that the death rate for the population of

cells’ death rate. There is supporting evidence in literature
indicating a unique impact for CHCl; in conjunction with other
carcinogenic compound regarding the formation of liver
tumors. Administration of CHCl; in drinking water inhibited
liver and lung tumors of ethylnitrosourea-imitated mice
(Peveira or al, 1985). Also, CHCl; was shown to inhibit
hypomethylation and increased messenger RNA expression of
the c-myc gene and the production of liver tumors by
dichloroacetic acid in mice (Pereira ef af., 2001).

The hypothesis that cytotoxicity leads to regenerative pro-
liferation and tumors implies that these relationships are
independent of chemical. That is, a given level of cytotoxicity
will lead to the same level of regenerative proliferation and tumor
response regardless of which chemical produced the cytotoxic-
ity. This hypothesis was evaluated by developing a BBDR that
described the relationship between cytotoxicity, regenerative
proliferation and tumor response. This model was applied to data
sets for CHCl;, CCly, and DMF. The model adequately described
the data for each chemical, although BD was chemical specific.
This implies that additional key events beyond cytotoxicity
leading to cellular proliferation are needed to explain differences
in tumor incidences across chemicals sharing the same MOA.
For example, mechanisms by which chemicals may interact with
initiated cells may be crucial in subsequent tumor formation.
Across all three chemicals, the results of the modeling exercises
in this paper suggest that without a growth advantage given to
initiated cells, background mutation rates and increased cellular
proliferation are not quantitatively enough to cause tumors.
Additionally, mechanisms that allow for initiated cells’ growth
advantage, as well as their rates, may vary across chemicals.
Therefore, cytotoxicity alone as manifested by increased
proliferation rate in response to cellular injury without
considering dynamics of initiated cells is not sufficient as
a MOA to quantitatively account for tumor incidences across
these three chemicals (i.e., CHCl;, CCly, and DMF).

An Alternative Formulation of the Model

As previously stated, the growth advantage present within
the initiated cell population, which is necessary to induce
tumor incidences, can be achieved computationally by re-
ducing the death rate of the initiated cells or by increasing the
proliferation rate of the initiated cells. The results presented
within this manuscript have been generated using the former
mechanism. However, a simple change to the model will allow
the investigation of the latter mechanism.
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A growth advantage which occurs due to an increased
proliferation rate can be considered by replacing the death and
division rates of the initiated cells (Equations 1 and 2) with the
following:

_ [on({) if dose =0
wult) = { an{f) - GA if dose > 0

Bi{t) = Bn(1) ,
where the GA parameter represents the increase of the initiated
cells’ proliferation rate over that of the normal cells (i.e., GA > 1).

With this revised formulation of the model, we again utilized
the optimization routine to identify optimal values for the GA

parameter for each chemical. The same results which have been
presented are yielded for CHCl; when GA = 1.275 (a 27%

9

(10}

DMF when GA = 1.539 (a 53% increase). Notice that, as with the
previous formulation using a decreased death rate, the param-
eters for CCly and DMF are remarkably similar, while the
parameter for CHCl; differs by more than 20%. These parameter
values are compared to the previous results in Tahle 3.

Future Directions for Model Improvement

The overall model consisted of three submodels: PBPK to
estimate rate of metabolism, cytotoxicity to estimate increased
proliferation rate, and a two-stage clonal model to estimate tumor
incidences. The overall model presented in this paper is unique
from previous tumor modeling efforts because it connects tumor
incidence estimates with rates of metabolism and measures of
cytotoxicity. Data used for the PBPK and cyotoxicity components
of the models were either obtained or recalculated from literature.
The parameters for the two-stage clonal growth model were
estimated using tumor incidences as they are reported in literature.
The lack of time-to-tumor data is a source of uncertainty for the
predicted shape of the model-generated temporal relationship of
the tumor incidence. For instance, when examining the tumor
incidence curves for CCl, and DMF, especially at the higher doses
(Figs. 5 and §), the model predicted an initial sharp increase in
tumor incidences. The tumor incidence reaches 100% very
quickly (after 45—60 weeks). This would imply that either the
animals develop and live with hepatic tumors for 40+ weeks or the
animals die with hepatic tumors before the conclusion of the study.
The accuracy of the tumor incidence trajectories could be better
evaluated if a more complete data set, which included time-to-
tumor data, is collected. However, in the absence of this data,
models can be developed based on available information from
literature to identify as many parameters as possible. These
literature-based models can be a valuable tool to numerically test
MOA applicability in comparison to experimental data (upon
which MOA are initially hypothesized) and identity data gaps.

In the two-stage clonal growth model presented here, the
parameters for the probability of a normal cell attaining
a mutation (py), the probability of an initiated cell attaining
a mutation (1), and the death rate reduction constant for
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initiated cells (BD) are needed. As was shown in Table 3, the
magnitude of Ly was fixed using a range of observed values in
literature (Ro and Rannala, 2007, Tsuruki er of., 2001) and
optimization to control data. The value of y; was set equal to
v as usually done for this type of modeling, specifically under
the assumptions that chemicals under investigation did not
show sufficient evidence in literature to produce mutations
above background. Therefore, the only parameter in the two-
stage clonal growth model utilized in this study that was fit to
dose-response data is BD. Further confidence on the estimate of
this parameter was based on using several doses for each
chemical’s tumor incidence dose-response data. Our estimate
for the delay parameter was based on an earlier value obtained
from the formaldehyde study because it incorporated time-to-
tumor data in nasal tissues. Uncertainty may exist due to the
possibility of differences between delay parameters between
tissues (nasal vs. liver), for which data to determine tissue-
specific parameters may provide improvements to the existing
model. Additionally, further experimental data utilizing time-
to-tumor data and estimates of proliferation and death rates
within foci for the three tested chemicals in this stady can be
useful in verifying model parameterization and findings.

Benefits to Risk Assessment

The benefits to human health risk assessment from this and
other BBDR models are directly dependent upon existing and
future empirical data characterizing the kinetics and health
effects of environmental pollutants. Mathematical models that
provide reasonable predictions of induced adverse health
effects based on key events of a MOA provide the current
utility of (1) qualitative weight of evidence contributions
for compounds hypothesized to work through this MOA,
(2) prioritization/screening tool for compounds with unknown
toxicity, and (3) specific research needs (e.g., empirical data,
assay specificity). Additionally, if a compound is hypothesized
to work through a MOA and the available data do not provide
a reasonable fit, it may indicate that other additional key events
or MOAC(s) contribute to the overall toxicity.

A critical point made by the MR (2007} is that quantitative
modeling efforts of this type must be initiated broadly to achieve
scientific milestones within a reasonable period of time. Utilizing
BBDR models for risk assessment has been previously described
(Andersen ef gf., 2002; Bdwards and Preston, 2008). Our BBDR
model provided adequate fit to data when cytotoxicity as MOA
for tumorigenesis was considered for each chemical alone.
However, comparison of the model parameters (specifically BD)
obtained from fitting model simulations to data for all three
chemicals suggests that cytotoxicity, as presented by cell injury
leading to increased cellular proliferation and tumor formation,
oversimplifies several possible key steps that may take place
in vivo as was shown in the case of CHCls.

Another value of this type of modeling effort is to identify
critical data needs for carcinogenic risk assessment. For
example, the model suggests a need to identify steps beyond
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cellular proliferation to explain differences in tumor incidences
between CHCl; and the other two chemicals when all produce
similar cellular proliferation rates (Table 4).

The present study provides an example of the utility of
BBDR modeling in testing a unified MOA across chemicals.
While the present model requires additional verification across
larger sets of chemicals, it is at least informative for the
chemicals tested here. Results from the model suggested that,
for CHCl;, CCly, and DMF, cytotoxicity as described by single
events for injury, cellular proliferation, and tumor formation
may be an oversimplification of other mechanisms, key events,
or MOAs that may exist.

SUPPLEMENTARY DATA

Supplementary data are available online at http://toxsci
.oxfordjournals.org/.
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